Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems
نویسندگان
چکیده
In this paper we summerize recent results on a posteriori error estimation and adaptivity for space-time finite element discretizations of parabolic optimization problems. The provided error estimates assess the discretization error with respect to a given quantity of interest and separate the influences of different parts of the discretization (time, space, and control discretization). This allows us to set up an efficient adaptive strategy producing economical (locally) refined meshes for each time step and an adapted time discretization. The space and time discretization errors are equilibrated, leading to an efficient method. Mathematics Subject Classification (2000). 65N30, 49K20, 65M50, 35K55, 65N50.
منابع مشابه
A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints
This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the...
متن کاملAdaptive Finite Element Methods for Parabolic Problems
We continue our work on adaptive nite element methods with a study of time discretization of analytic semigroups. We prove optimal a priori and a posteriori error estimates for the discontinuous Galerkin method showing, in particular, that analytic semigroups allow long-time integration without error accumulation. 1. Introduction This paper is a continuation of the series of papers 1], 2], 3], ...
متن کاملEfficient numerical solution of parabolic optimization problems by finite element methods
In this paper, we discuss efficient numerical methods for solving optimization problems governed by parabolic partial differential equations. The optimization problems are formulated in a general setting including optimal control as well as parameter identification problems. Both, time and space discretization are based on the finite element method. This allows a natural translation of the opti...
متن کاملA Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part I: Problems Without Control Constraints
In this paper we develop a priori error analysis for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different types of control discretizations we provide error e...
متن کاملAdaptive Finite Element Methods For Optimal Control Of Second Order Hyperbolic Equations
In this paper we consider a posteriori error estimates for space-time finite element discretizations for optimal control of hyperbolic partial differential equations of second order. It is an extension of Meidner & Vexler (2007), where optimal control problems of parabolic equations are analyzed. The state equation is formulated as a first order system in time and a posteriori error estimates a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 46 شماره
صفحات -
تاریخ انتشار 2007